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Abstract The nature of the singular behavior of Hartree–Fock (HF) potential energy
surfaces (PESs) that arises in the presence of a spin-preserving instability of the rele-
vant restricted HF solutions is illustrated by a simple π -electron model of the allyl radi-
cal as described by the Pariser–Parr–Pople semi-empirical Hamiltonian. The simplicity
of this three-electron model system stems from a low dimension of the appropriate
variational space which enables an independent direct analytical approach illustrat-
ing the appropriateness of doublet stability conditions for restricted open-shell HF
(ROHF) solutions. At the same time it permits the derivation of explicit expressions
for the energy providing a complete description of swallowtail or Whitney-fold catas-
trophe singularities on the corresponding PES that arise with the onset of a doublet
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instability. In particular, this simple model enables the computation of the part of the
PES that is associated with unstable ROHF solutions and which would be difficult if
not impossible to generate in full generality via standard self-consistent field iterative
procedures in more complex situations.

Keywords Restricted open-shell Hartree–Fock (ROHF) solutions · Doublet
instability · Pariser–Parr–Pople Hamiltonian · Allyl radical π -electron model ·
Symmetry breaking · Potential energy surfaces · Swallowtail or Whitney-fold
singularity

1 Introduction

The Hartree–Fock (HF) approximation is undoubtedly the most often exploited ver-
sion of the independent particle model (IPM) and represents nowadays a standard tool
in investigations of the atomic and molecular electronic structure. Although such a
description is often lacking in accuracy due to an average account of the inter-elec-
tronic Coulomb interactions, it nonetheless provides a useful qualitative—and even
semi-quantitative—description of various molecular properties and serves as a point
of departure for most post-HF correlated methods.

The relevant wave function |�〉 has the form of a single anti-symmetrized product
of molecular orbitals (MOs) or spin-orbitals (MSOs) |Ai 〉,

|�〉 = A |A1 A2 · · · AN 〉, (1)

where A designates an appropriate anti-symmetrizer and distinguishes itself by yield-
ing the “best” IPM energy E[�],

E[�] = 〈�|H |�〉, 〈�|�〉 = 1. (2)

The HF equations are then obtained by requiring the first variation of the energy mean
value functional E[�], Eq. (2), to vanish, i.e.,

δ(1)E[�]|�=�0 = 0, 〈�0|�0〉 = 1, (3)

where |�0〉 designates the desired HF solution.
It is often assumed that this stationary point on the mean energy hyper-surface

E[�], Eqs. (2) and (3), represents the global minimum. This is indeed the case in
many instances, at least when investigating standard molecular systems in the vicin-
ity of their equilibrium geometry. However, when considering entire potential energy
surfaces (PESs) or curves (PECs), even for atoms and diatomics, this is no longer the
case (see, e.g., [1–17]; for reviews see [18–21]). Yet, the fact that E[�0] represents
a stationary point on E[�] is no guarantee that it represents the absolute minimum
or, in fact, even a local minimum. In order to find out at least the local character of
such a stationary point we have to examine the second variation, δ(2)E[�0], leading to

123



J Math Chem (2013) 51:427–450 429

Thouless’ stability conditions [22]. The positive definiteness of δ(2)E[�0] then pro-
vides a sufficient condition for a HF solution to represent a local minimum on E[�].
Such solutions are referred to as stable ones in contrast to unstable solutions in which
case δ(2)E[�0] < 0 (the case when δ(2)E[�0] = 0 is more complex; see, e.g., [15] and
references therein). Such unstable HF solutions are thus characterized by stationary
points representing a maximum or a saddle point on E[�]. Consequently, in the pres-
ence of an instability another HF solution having a lower energy than the unstable one
must exist and no potential barrier on E[�] will separate it from the unstable solution.
This is clearly warranted by the fact that the energy functional E[�] decreases in some
direction in the variational space from the stationary point characterizing an unstable
solution and that any HF solution represents an upper bound to the exact energy.

Within the standard MSO-based, finite-dimensional, quantum-chemical models
relying on the linear combination of atomic orbitals (LCAO) approximation the Thou-
less’ stability conditions take the form of a corresponding Hessian. In such a case it
is very important to precisely specify the variational manifold involved. Specifically,
for Hamiltonians that are invariant with respect to various symmetry group opera-
tions (spatial, spin, alternancy, particle number, etc.) we can formulate corresponding
symmetry restricted HF solutions [e.g., restricted HF (RHF) solutions with doubly
occupied MOs or unrestricted HF (UHF) solutions with different spin-up and spin-
down MOs for closed-shell systems or the so-called restricted open-shell HF (ROHF)
solutions for simple open-shells, etc.] and corresponding stability conditions. In the
case of an overall spin symmetry this leads to the so-called singlet and non-singlet or
triplet stability conditions [18,19,23–26] for closed-shells, to doublet stability con-
ditions for simple open-shells [27,28] or, generally, for high-spin HF solutions [14].
These conditions and the issuing broken-symmetry (BS) solutions were explored for
a large number of systems, both at the semi-empirical [12,13,23,25,26,29,30] and
ab initio [1–4,6–11,14,15,17] levels. The other types of symmetry restricted stability
conditions were explored by Fukutome [18,31–35], providing a general classifica-
tion for closed-shell type systems later extended to open-shells [21]. In particular, we
mention several extensive reviews on this topic [18–21].

At this point it is important to emphasize that both stable, symmetry-adapted (SA)
as well as BS HF solutions—the latter arising in the presence of an instability of
the symmetric solution—employ the same symmetry-adapted Hamiltonian. Conse-
quently, these BS solutions are invariably degenerate (in case of binary symmetry
operations doubly degenerate) and we shall refer to them as BS solutions of the first
kind. This fact is also closely related with the so-called Löwdin symmetry dilemma
[36], even though in this case the symmetric and BS solutions may both be stable in
principle and separated by a potential barrier. The implications and usefulness of BS
solutions will be discussed in greater detail below. Nonetheless, the presence of an
instability implies the existence of a BS HF solution with lower energy and, ultimately,
of a BS solution of the second kind that breaks the symmetry of the Hamiltonian (i.e.,
of the nuclear framework) with yet lower energy.

Let us now point out that the symmetry breaking at the IPM level (e.g., for HF or
Brueckner-type solutions [37]) does not necessarily reflect the reality of the relevant
molecular structures implied by BS solutions of the second kind since it may only
indicate the inadequacy of the IPM arising due to the lack of correlation effects. In
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such cases the instability and the corresponding BS solutions may disappear when
the correlation effects are properly accounted for and a complete basis set limit is
approached (cf., e.g., [38]). Even when the symmetry breaking persists at the corre-
lated level, this effect may be extremely small to be verified experimentally (cf., e.g.,
the results for the BNB and N3 species [9,11]). Nonetheless, even though the symme-
try breaking may not appear at the equilibrium geometry, it will manifest itself sooner
or later away from the equilibrium. This is the case, for example, that arises even for
homonuclear diatomics [14,15] in which case the symmetry breaking may lead to
asymmetric dissociation products. Yet, in many cases the implied symmetry break-
ing is real, leading to the so-called Wigner molecules (Wigner dimerization, Wigner
lattice, crystals, islands, bubbles, stripes or even Wigner necklase). This is particu-
larly the case for extended systems leading, for example, to bond-length alternation
in polyenic chains (or their cyclic polyene models, see, e.g., [5,18,23,24,39–43]). A
nice model example which is also clearly understood on physical grounds is the H6
model system [4].

It is the purpose of this paper to present a simple example involving an open-shell
system which clearly and explicitly displays the nature of a singular behavior of the
relevant PES or PEC that arises in the presence of doublet instability. For this purpose
we employ the Pariser–Parr–Pople (PPP) model of the allyl radical [30]. The stability
of its ROHF solutions was also explored at the ab initio level [1,2]. This example
will also enable us to compare general doublet stability conditions [24] with a directly
generated analytical result by relying on a simple, one-parametric form of the energy
functional for this model.

2 Broken-symmetry solutions versus broken-symmetry structures

At this stage it is important to make a clear distinction between two kinds of HF solu-
tions that are often referred to as BS solutions, namely those obtained with a fully
symmetry-adapted Hamiltonian and those that employ a BS Hamiltonian based on
an appropriately distorted molecular structure, the latter implying a BS equilibrium
geometry or simply a distortion along some vibrational coordinate. We shall refer to
them as BS solutions of the first and second kind, respectively. In the first instance the
BS RHF or ROHF solution arises due to the presence of a spin-preserving instability
(singlet instability in a closed-shell case or doublet instability in a simple open-shell
case). We shall focus here on solutions preserving not only the total spin component
Sz but also the total spin S2, i.e., on RHF or ROHF solutions. The total-spin-violating
solutions that arise in the presence of a triplet or a non-singlet instability in closed-shell
systems lead to UHF solutions that break the S2 invariance and often also the space
symmetry (as is, e.g., the case for quantum dots; see reviews [44,45]). Clearly, open-
shell systems are always unstable to total-spin breaking in view of spin-polarization
due to a different number of spin-up and spin-down electrons. It is worth noting that the
doublet stability for simple open-shells (or, generally, total-spin preserving high-spin
ROHF solutions for general open-shell systems) are absent in Fukutome’s classifica-
tion [31–35] that is restricted to closed-shell systems. A more general classification,
including ROHF solutions, was given in [21].
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In view of the nonlinearity of HF equations we can often find several BS solu-
tions of the first kind (for a general search for multiple HF solutions, see [46]) that
arise even in the case of spin-preserving symmetry breaking (i.e., those arising as a
consequence of singlet or doublet instabilities in the presence of multiple negative
roots in the relevant stability problem; cf. [3]). Such BS solutions are not necessarily
stable and thus lead to new BS solutions. For example, in the case of cyclic polyenes
CN HN , N = 2n = 4ν + 2, ν = 1, 2, . . . as described by the semi-empirical PPP
Hamiltonian such pure singlet BS RHF solutions may display two types of charge
density waves (CDW) which have been referred to as the diagonal and off-diagonal
CDWs [23–26] (see also [28,30]). In the former case these solutions display alternating
atomic charges but possess identical bond-orders while the latter case is characterized
by alternating bond-orders and standard uniform unit atomic charges. The BS solu-
tions with diagonal CDWs are again singlet unstable and lead to stable bond-order
alternating solutions with off-diagonal CDWs. Similarly, in the atomic case of a dou-
bly negative oxygen O2− we can generate two closed-shell BS solutions having the
symmetry of an oblate and a prolate symmetric top, the former one being again singlet
unstable [6] (note that these solutions arise because of the “confinement” due to the
use of finite basis sets; more information in this regard may be found in [6,10]). In gen-
eral, multiple BS solutions are found whenever the HF stability problem yields several
negative roots λi , the corresponding eigenvectors pointing to various stationary points
or HF solutions on the mean energy hyper-surface E[�] (see, e.g., [14,15] for more
detail). The stable BS solution usually corresponds to the lowest eigenvalue λi .

Now, when a BS solution of the first kind breaks the spatial symmetry of the sym-
metry-adapted Hamiltonian by displaying a symmetry-breaking (e.g., off-diagonal)
CDW, we can actually arrive to BS solutions of the second kind by correspondingly
distorting the molecular geometry to an appropriate subgroup of the original fully-
symmetric point group. For example, in the case of cyclic polyenes, the distorted
geometry will be characterized by the Dnh point group in lieu of the DNh group.
Clearly, such BS solutions of the first kind are degenerate being related via the sym-
metry group operation that is missing in the subgroup (in the CN HN case this will be
the CN rotation so that the BS solution displays the bond-order alternation along the
chain).

Thus, when we consider an electronic Hamiltonian that is associated with a dis-
torted geometry of the nuclear framework (alternating bond-lengths in the CN HN

case) the BS solutions of the second kind will arise splitting the degeneracy of the BS
solutions of the first kind. Generally, the in-phase deformation (shorter bond-length
for larger bond-orders and vice versa) will lower the energy while the out-of-phase
deformation will increase it (see, e.g., [5]). It can be shown that the potential energy
curves as a function of the distortion parameter (e.g., the difference or the ratio of
longer and shorter bond lengths in CN HN ) will cross at a finite angle precisely at the
energy of the degenerate BS solutions associated with the undistorted geometry (cf.
[4,5,19,20,39]). Yet, the potential associated with the out-of-phase deformation will
generally exist in only a limited range of small deformations.

An unstable, symmetry-adapted solution may also be, in principle, extended to
broken-symmetry geometries. Yet, the actual computation of such solutions via care-
ful “analytic continuation” can only be achieved in a very small interval of distorted
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geometries even though such a solution must exist within the above mentioned range
given by the out-of-phase type potentials with higher energy than the BS solution of
the first kind. This is of course associated with the fact that these unstable solutions
correspond to a maximum or a saddle point on the mean energy hyper-surface E[�] in
which case the iterative self-consistent field (SCF) procedure will invariably collapse
to a stable, lower-lying solution.

The general nature of PESs or PECs of the kind arising in the presence of a spin-pre-
serving symmetry breaking has been briefly pointed out earlier [4,5,9,17] but, due to
the above explained difficulties, these potentials have never been explicitly generated
in full detail. In the closed-shell case the general form of this type of a singular behav-
ior was described by Mestechkin (see Fig. 1 of [20]) using perturbation theory with
distortions along the symmetric and asymmetric vibrational coordinates employing a
rather formidable formalism. In either case it can be shown that the resulting PES or
PEC displays what is known in the catastrophe theory as a swallowtail or Whitney-
fold singularity. Yet, as already pointed out it is very difficult to generate such a PES
computationally. We thus present a simple model system in which case the nature and
the origin of such a singular behavior can be easily generated and displayed.

3 Stability conditions

3.1 General Thouless stability conditions

The Thouless stability conditions [22] in a spin-orbital form may be easily derived
by considering the second variation of the mean energy functional E[�] at the HF
solution |�〉 = |�0〉 which can be expressed as a Hermitian quadratic form (see, e.g.,
[19,21,23])

δ(2)E = 1
2

[
C
C̄

]† [
A B
B̄ Ā

] [
C
C̄

]
, (4)

with A† = A and B† = B̄. Here C is a column matrix of coefficients cAi →Ai that
are associated with mono-excitations Ai → Ai . The subscripts and superscripts indi-
cate MSOs that are, respectively, occupied and unoccupied in the HF wave function
|�0〉 = A|A1, A2, . . . , AN 〉. A dagger indicates the Hermitian conjugate quantity
and a bar the complex conjugation. Further, A represents the CI submatrix within the
manifold of monoexcitations and B the block between the ground and biexcited states,
i.e.,

AAi →Ai ,A j →A j = f Ai ,A j δA j ,Ai − f A j ,Ai δAi ,A j + 〈Ai A j |v|Ai A j 〉A,

B̄Ai →Ai ,A j →A j = 〈Ai A j |v|Ai A j 〉A. (5)

Finally, f A,B designates matrix elements of the Fock operator f A,B = 〈A| f |B〉 and
〈AB|v|C D〉A labels anti-symmetrized two-electron matrix elements 〈AB|v|C D〉A =
〈AB|v|C D〉 − 〈AB|v|DC〉 in the Dirac notation.
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The positive definiteness of δ(2)E[�0] then requires all the eigenvalues λi of the
characteristic problem

[
A B
B̄ Ā

] [
Di

D̄i

]
= λi

[
Di

D̄i

]
(6)

to be positive. When A and B are real, this problem may be factorized into the two
subproblems for matrices (A + B) and (A − B) of half the dimension. It can also be
shown [23] that in the presence of the instability (or instabilities in the presence of
several negative roots λi ) the eigenvector associated with the lowest negative eigen-
value gives the direction of the steepest descent on the energy hypersurface E[�] at
� = �0. This fact can be conveniently exploited when searching for BS HF solutions
[23].

3.2 Spin-adapted stability conditions

In molecular electronic structure investigations one generally employs a spin-free
electronic Hamiltonian that commutes with both total spin operators S2 and Sz and
one relies on simple MSOs given by a product of orbital and pure-spin parts, i.e.,
|A〉 = |a〉|σ 〉 with σ = α or β (or ± 1

2 ). In the closed-shell case the MOs |a〉 are
doubly occupied so that the relevant wave function represents a pure singlet state with
Sz = S = 0. One can thus formulate spin-symmetry restricted stability conditions
[19,23] by carrying out projections onto the singlet- and triplet-coupled manifolds of
monoexcitations Ai → Ai . This yields the so-called singlet and triplet (or non-singlet)
stability conditions [23,29]. The former ones preserve the zero total spin and in the
presence of instability lead to closed-shell type BS solutions with doubly occupied
MOs while the triplet instability implies the existence of spin-BS solutions, referred to
as unrestricted HF (UHF) solutions of the DODS (i.e., different orbitals for different
spins) type.

Distinguishing the corresponding A and B matrices and their matrix elements by
the superscripts s and t for the singlet and triplet stability problem, respectively, we
then obtain

As,t
ai →ai ,a j →a j = fai ,a j δa j ,ai − fa j ,ai δai ,a j + 2τ 〈ai a j |v|ai a

j 〉 − 〈ai a j |v|a j ai 〉,
Bs,t

ai →ai ,a j →a j = 2τ 〈ai a j |v|ai a j 〉 − 〈ai a j |v|a j ai 〉, (7)

where τ = 1 in the singlet case and τ = 0 in the triplet case. Here we must note that
more complex stability problems will be encountered if one relies on general MSOs
given as a linear combination of spin-up and spin-down components (for details see
[18,21]).

In this paper we shall require spin-preserving stability conditions for a simple open-
shell case, i.e., for the ROHF solutions. These so-called doublet stability conditions
(recall that the ROHF solutions are always non-doublet unstable) that preserve the
ROHF wave function form |�0〉 = A|a1, ā1, a2, ā2, . . . , an, ān, a0〉, where an over-
bar indicates the down spin, take a more complex form since we have to distinguish
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different types of monoexcitations (namely, occupied to open-shell ai → a0, occu-
pied to virtual ai → ai , and open-shell to virtual a0 → ai excitations). We thus have
[27,28]

Ad
a0→ai ,a0→a j = fai ,a j − fa0,a0δai ,a j ,

Ad
a0→ai ,ai →a = − fai ,a0δai ,a + 〈ai ai |v|a0a〉,

Ad
ai →a,a j →a′ = δai ,a j (2δa,a′ fa0,a0 − δa,a0 fa0,a′) − 2δa,a′ fa j ,ai + δa0,a′δa,a0 fa j ,ai

+δa j ,ai (2 fa,a′ − δa0,a′ fa,a0) + 2〈a j a|v|a′ai 〉a
+δa j ,ai 〈aa0|v|a′a0〉a − δa,a′ 〈a j a0|v|ai a0〉a − δa,a0〈a j a0|v|a′ai 〉a
−δa0,a′ 〈a j a|v|a0ai 〉a − (2 − δa,a0)δa,a′δai ,a j fa0,a0 , (8)

and

Bd
a0→ai ,a0→a j = 0,

Bd
a0→ai ,ai →a = −δa0,a fai ,ai + 〈ai a0|v|aai 〉a = Bd

ai →a,a0→ai ,

Bd
ai →a,a j →a′ = 2〈ai a j |v|aa′〉a − δa0,a〈ai a j |v|a0a′〉a − δa0,a′ 〈ai a j |v|aa0〉a, (9)

where non-indexed orbital labels a and a′ designate either the open-shell orbital a0 or
the virtual orbital ak . The anti-symmetrized two-electron integrals are now defined as
follows

〈ab|v|cd〉a ≡ 2 〈ab|v|cd〉 − 〈ab|v|dc〉. (10)

4 Model description

We employ a simple π -electron model of the allyl radical as described by the PPP
electronic Hamiltonian HPPP,

HPPP =
∑
i,j

zij Eij + 1
2

∑
i,j

γij(Eii Ejj − δij Eii), (11)

where Eij are the generators of the orbital unitary group U(n), Eij = ∑
σ X†

iσ Xjσ ,

with X†
iσ and Xiσ representing, respectively, the creation and annihilation operators

defined on a hypothetical basis of a symmetrically-orthonormalized set of 2pz carbon
atomic spin-orbitals |iσ 〉 = |i〉|σ 〉, σ = ± 1

2 . The one-particle matrix elements zij

have the form

zij =
⎧⎨
⎩

αi − ∑
j( �=i) Z jγij if i = j,

βij if i, j are nearest neighbors,
0 otherwise,

(12)
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d d d1 d2

ω : π /40 π /2

d1 + d2 = 2d

(a)

(b)

Fig. 1 Schematic representation of the studied π -electron model of the allyl radical. a Structure of the
carbon nuclear framework for the symmetric and distorted, broken-symmetry situations. b Schematic
π -electron distribution in the symmetry-adapted (SA) and broken-symmetry (BS) solutions

where αi is the so-called Coulomb integral and Zi designates the number of π -elec-
trons contributed by the i-th atomic site. For off-diagonal one-body matrix elements zij

one generally invokes the tight-binding approximation so that only resonance integrals
(or hopping terms) βij between the nearest-neighbor sites i and j are accounted for.
The two-body terms γij then represent two-electron Coulomb integrals γij = 〈i j |v|i j〉.
All other two-electron integrals are neglected in view of the zero-differential overlap
approximation. In the case of neutral, unsaturated hydrocarbons when Zi = 1 the
above Hamiltonian is often written in the form (see, e.g., Eq. (6.19) of [47])

H ′
PPP = HPPP + Hnucl =

∑
i,j

′
βij Eij + 1

2

∑
i,j

γij(Eii − 1)(Ejj − 1), (13)

where we assumed all one-center integrals to be equivalent so that αi = α ≡ 0 and
γii = γ11 and where we added the nuclear repulsion energy Hnucl as given by the
Goeppert-Mayer and Sklar approximation [48], Hnucl = ∑

ij Zi Z jγij. The prime on
the first summation symbol implies that only nearest-neighbor resonance integrals are
to be accounted for.

For the studied π -electron model of the allyl radical we assume the three carbon
centers to form the vertices of a triangle with a fixed ̂CCC angle of 2π /3 and, generally,
different C–C bond-lengths d1 and d2 (cf. Fig. 1a). For non-symmetric structures with
d1 �= d2 we assume that d1 + d2 = 2d, representing a cut through the π -electronic
PES that is perpendicular to the line d1 = d2 characterizing symmetric structures
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(cf., e.g., [5]). The π -electron distribution for the symmetric and asymmetric geom-
etries is then schematically indicated in Fig. 1b. For symmetric structures the SA
solution occurs always at ω = π/4. In the fully correlated limit (β = 0) the (BS)
solutions occur at ω = 0 and π/2. The diagrams in Fig. 1b may also be regarded as
the valence bond (VB) structures related by blue double arrows, the red double arrows
implying the relationship of stable solutions for distorted structures with BS ones for
symmetric structures. For a symmetric system with equal bond-lengths, d1 = d2 = d,
we choose the standard C–C bond length d = 1.4 Å and we also set βμν = β in
which case the only semi-empirical parameters are the resonance integral β (whose
spectroscopic value is usually set equal to −2.4 eV) and the two-electron Coulomb
integrals γμν that are evaluated using various approximations (see, e.g., [49]). For the
sake of simplicity we employ a modified, simple point-charge approximation so as
to obtain a finite on-site self-interaction for γμμ ≡ γ11 which is referred to as the
Mataga-Nishimoto approximation [50], i.e.,

γμν = e2/(Rμν + a), (14)

where Rμν is the distance between the centers μ and ν. For the one-center integral γ11
one then employs the so-called (I − A) approximation [48] with I and A designat-
ing, respectively, the 2pz atomic orbital valence state ionization potential and electron
affinity, γ11 = I − A. The generally accepted value for γ11 is γ11 = e2/a = 10.84 eV,
which in turn determines the parameter a in Eq. (14).

We note in passing that by considering only the on-site integrals γ11 ≡ γ0 by
setting γμν = γ0δμν we obtain the Hubbard Hamiltonian in which case the hop-
ping integral β is usually designated as β ≡ −t and the on-site Coulomb integral as
γ0 ≡ U . This makes it possible to explore the entire correlation range in terms of a
single parameter U/t representing the so-called coupling constant. Although the PPP
Hamiltonian handles the electron repulsion in a more realistic way (which is essential
for spectroscopic purposes, see, e.g. [51]) we can still employ the inverse value of
the resonance integral β as a coupling constant while keeping the Coulomb integrals
fixed at their values given by Eq. (14) and thus explore the entire correlation regime.
This is straightforward not only when we can regard the C–C bonds as equivalent, so
that βμν = β with μ and ν being nearest neighbors, but also when different resonance
integrals must be employed as in the case of asymmetric, distorted geometries when
we explore the entire PES. We then associate a fixed value of β with a standard C–C
bond (Re = 1.4 Å) and evaluate the resonance integrals β(R) for stretched bonds with
bond-length R by relying on the so-called Mulliken “magic” formula (see, e.g., [5])
which assumes proportionality of the resonance integrals to the corresponding overlap
integrals S(R), i.e.,

β(R)

β(Re)
= S(R)

S(Re)
. (15)

For 2pz carbon atomic orbitals in π -orientation which are R(Å) apart we have then

S(R) = 1

15
exp(−ρ)[ρ3 + 6ρ2 + 15ρ + 15], ρ = ξ R/a0, (16)
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where ξ = 1.625 and a0 is the Bohr radius (a0 = 0.52917 Å). We note that when
β → 0 we reach the fully correlated limit while β → ∞ (for practical purposes β ≈ 5
eV) corresponds to the uncorrelated (Hückel) limit.

5 Stability conditions for the symmetric model

We first apply the doublet stability conditions of Sect. 3.2 to a standard symmetric case
having equivalent C–C bonds. Numbering sequentially carbon atomic sites in Fig. 1a
we designate one- and two-electron atomic integrals as follows: β12 = β23 ≡ β and
γ11 ≡ γ0, γ12 = γ23 ≡ γ1, γ13 ≡ γ2, respectively. The LCAO MOs (labeled as
|1〉, |0〉, and | − 1〉) are in this case fully determined by the symmetry of the model,
so that

⎡
⎣ |1〉

|0〉
| − 1〉

⎤
⎦ = 1

2

⎡
⎣ 1

√
2 1√

2 0 −√
2

1 −√
2 1

⎤
⎦

⎡
⎣ |χ1〉

|χ2〉
|χ3〉

⎤
⎦, (17)

where |χi 〉 designate the effective orthonormal AOs of the PPP model. In the following
we specify the MOs by their labels 1, 0, and −1, so that the ground state ROHF wave
function may be simply written as |�0〉 = A|11̄0〉, the bar indicating again the down
spin.

We can now easily evaluate the one- and two-electron integrals over the MOs,
Eq. (17), recalling that the one-electron matrix z = [zμν] has the form

z =
⎡
⎣−(γ1 + γ2) β 0

β −2γ1 β

0 β −(γ1 + γ2)

⎤
⎦. (18)

We next evaluate the relevant matrix elements of the doublet stability problem,
Eqs. (8) and (9), obtaining

Ad
1→0,1→0 = −√

2β + (γ0 − γ2)/8 = Ad
0→−1,0→−1,

Ad
1→0,0→−1 = (γ0 − γ2)/4,

Ad
1→0,1→−1 = 0 = Ad

0→−1,1→−1,

Ad
1→−1,1→−1 = −4

√
2β − (γ0 − γ2)/8 + (γ0 + γ1)/2, (19)

and

Bd
1→0,1→0 = Bd

1→0,1→−1 = Bd
0→−1,0→−1 = Bd

0→−1,1→−1 = 0,

Bd
1→0,0→−1 = Bd

0→−1,1→0 = 3(γ0 − γ2)/8,

Bd
1→−1,1→−1 = γ0 − γ1 − (γ0 − γ2)/4. (20)

The 3 × 3 stability matrices Ad ± Bd factorize into a 2 × 2 and 1 × 1 blocks since
the doubly occupied MO |1〉 and the virtual MO |− 1〉 are symmetric while the singly
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occupied MO |0〉 is antisymmetric with respect to the interchange |χ1〉 � |χ3〉, so
that (Ad ± Bd)1→0,1→−1 = (Ad ± Bd)0→−1,1→−1 = 0. The relevant 2 × 2 stability
block that yields the lowest lying root is then

Ad + Bd =
[

κ − λ 5(γ0 − γ2)/8
5(γ0 − γ2)/8 κ − λ

]
, κ = −√

2β + (γ0 − γ2)/8, (21)

so that

λ± = κ ± 5(γ0 − γ2)/8 = −√
2β + (γ0 − γ2)/8 ± 5(γ0 − γ2)/8. (22)

Thus the lowest root λ− ,

λ− = −√
2β − (γ0 − γ2)/2, (23)

leads to the stability condition

|β| > (γ0 − γ2)/(2
√

2) ≈ 2.48eV. (24)

We thus see that the ROHF instability onset occurs in the vicinity of the spectroscopic
value for the resonance integral. This agrees well with an earlier ab initio result [1,2]
for the allyl radical where only a minimal symmetric stretch of the C–C bonds was
required in order to reach the instability range of geometries.

6 Direct analytical approach

In view of the simplicity of our model we can explore the stability of its ROHF solutions
directly since the appropriate variational space for the mean energy functional E[�]
is one-dimensional and can thus be parametrized by a single parameter designated
below by ω (for more general parametrizations which allow breaking of other than
spatial symmetries, see [52]). We thus generalize the MOs of Eq. (17) via ω-dependent
orthonormal MOs

⎡
⎣ |1〉

|0〉
| − 1〉

⎤
⎦ = 1√

2

⎡
⎣ s 1 c√

2c 0 −√
2s

s −1 c

⎤
⎦

⎡
⎣ |χ1〉

|χ2〉
|χ3〉

⎤
⎦, (25)

where

c ≡ cos ω and s ≡ sin ω. (26)

In this way we can cover the entire region of BS solutions with ω = π/4 representing
the symmetric MOs (17) while ω = 0 and ω = π/2 yield fully localized orbitals in
one of the C–C bonds (cf. Fig. 1b). Note that here we have exploited the alternancy
symmetry of our PPP Hamiltonian (see, e.g., [53]) which implies that the MOs |1〉 and
|−1〉 form an alternantly-conjugate pair while the MO |0〉 is self-conjugate. Moreover,
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the AOs are orthonormal by definition so that the matrix relating the MOs with the
atomic ones must be orthogonal.

Clearly, the MOs (25) also describe asymmetrically distorted models with unequal
C–C bonds (see the bottom part of Fig. 1b). For this reason we will thus distinguish
the resonance and two-electron Coulomb integrals for distorted structures by relying
on the following shorthand notation

β ≡ β12, β ′ ≡ β23

γ0 ≡ γ11, γ1 ≡ γ12, γ ′
1 ≡ γ23, γ2 ≡ γ13, (27)

so that the z matrix takes the form

z =
⎡
⎣−(γ1 + γ2) β 0

β −(γ1 + γ ′
1) β ′

0 β ′ −(γ ′
1 + γ2)

⎤
⎦. (28)

The total energy E(ω) that is associated with the wave function |�(ω)〉 = A|11̄0〉
is given by

E(ω) = 2 〈1|z|1〉 + 〈0|z|0〉 + 〈1 1|v|1 1〉 + 〈1 0|v|1 0〉a. (29)

The required integrals are easily evaluated (see “Appendix”) yielding the following
explicit expression for the energy

E(ω)=2 (βs+β ′c)+ 1
2γ0(1+s2c2)−γ1(1 + 1

2 s2)−γ ′
1(1 + 1

2 c2)−γ2(1 + 1
2 s2c2).

(30)

For the symmetric case (ω = π/4) we thus obtain the energy

E(π/4) = √
2β + 5

8γ0 − 5
2γ1 − 9

8γ2, (31)

and, in general, identifying primed and unprimed parameters (e.g., setting β = β ′ and
γ1 = γ ′

1) we get

Esym(ω) ≡ E(ω) = 2 β(s + c) + 1
2γ0(1 + s2c2) − 5

2γ1 − γ2(1 + 1
2 s2c2). (32)

Differentiating with respect to ω we get

E ′(ω) = 2 β(c − s) + 1
4 (γ0 − γ2) sin(4ω),

= (c − s)[2 β + (γ0 − γ2)sc(c + s)], (33)

so that E ′(π/4) = 0 for whichever parametrization is employed, as expected.
In order to derive the stability condition for this ROHF solution we calculate the

second derivative, obtaining

E ′′(ω) = −2 β(s + c) + (γ0 − γ2) cos(4ω), (34)
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so that for the stability of our ROHF wave function we require that

E ′′(π/4) = −2
√

2β − (γ0 − γ2) > 0, (35)

which is identical to the condition (24) derived earlier by relying on general stability
conditions for a simple open-shell case, Sect. 5. We note that for ω = 0 or π/2 we
have E ′(0) = −E ′(π/2) = 2 β, so that for β = 0 we have again a HF solution (i.e.,
a stationary point) with E ′′(0) = E ′′(π/2) = γ0 − γ2 > 0, implying stable BS HF
solutions.

In general, for a fixed geometry the symmetry-adapted HF solutions are unstable
for the coupling constants—given as the reciprocal value of the resonance integral
β—in the interval 0 ≥ β > βcrit , where βcrit = −(γ0 − γ2)/(2

√
2). To each such β

value corresponds an ω value ωopt yielding a BS HF solution given by the vanishing
of the square bracket in the expression (33) for the first derivative of the energy mean
value, namely

β = − 1
2 (γ0 − γ2) f (ω) with f (ω) ≡ f = sc(c + s). (36)

Note that f (ω) is symmetric aboutω = π/4, i.e., f (ω) = f (π/2−ω), where it reaches
its maximum value f (π/4) = 1/

√
2, so that we always obtain two degenerate BS

solutions related via the reflection in the plane passing through the central C2 atom
and perpendicular to the molecular plane. Thus, 1 < f < 1/

√
2 for 0 < ω < π/2,

so that a BS HF solution exists for all β values in the interval 0 ≥ β > βcrit as also
implied by the plot of β vs. ωopt shown in Fig. 2.

The inverse relationship to (36), i.e., ωopt = f −1(βopt/K ); K = − 1
2 (γ0 − γ2) is

clearly multiply (i.e., doubly) valued, each branch corresponding to one degenerate BS
solution. For each β in the interval 0 ≥ β > βcrit , βcrit = −(γ0 −γ2)/(2

√
2), we find

two values of ωopt yielding the corresponding BS ROHF solutions. The relationship
(36) thus defines pairs (βopt, ωopt) ≡ (β(ωopt), ωopt) of β and ω values which char-
acterize stable, degenerate BS HF solutions given by the minima on the mean energy
functional Esym(ω) or E(ω) curves for 0 ≤ |β| < |βcrit| as shown in Fig. 3. The stable,
doubly degenerate BS ROHF solutions for |β| < |βcrit| correspond to local minima
and the unstable one to a maximum which turns into a minimum once |β| > |βcrit|, in
which case only a stable symmetry-adapted ROHF solution exists. The entire mean
energy variational (hyper-)surface E as a function of β and ω is illustrated in Fig. 4.
The cut (red curve online) at β = βcrit ≈ −2.48 eV separates regions of stable and
unstable ROHF solutions for ω = π/4. At this β value the minima for β < βcrit turn
into maxima for β > βcrit at ω = π/4.

Another clear indication of a singular behavior of the HF solutions at β = βcrit
is provided by the first-order density (bond-order) matrix ||pμν ||. For the considered
case of symmetric geometries we have that

p12 ≡ s = sin ω, p23 ≡ c = cos ω, p13 = 0, pμμ = 1, μ = 1, 2, 3, (37)
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Fig. 2 Dependence of the optimal values ωopt of the variation parameter ω defining the BS ROHF solution
versus the corresponding resonance integral β
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Fig. 3 Mean energy value functional Esym(ω), Eq. (32), dependence on the variational parameter ω for
several values of the resonance integral β (β = 0,−1, −1.5, βcrit ≈ −2.48, and −3 eV). These plots are
shifted to coincide at ω = π/4
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Fig. 4 A 3D plot of the variational mean energy (hyper)surface E(β, ω) as a function of both the resonance
integral β and the variational parameter ω relative to the energy associated with the symmetric MOs defined
by ω = π/4 ≈ 0.785 rad, c.f., Eq. (31)

0 1 2 3
0

1

p = p12 23

p12

p23

| |ββcrit|       |

pμν

0.707

Fig. 5 Plot of the first-order density (bond order) matrix off-diagonal elements p12 and p23 for the SA
(|β| ≥ |βcrit |) and BS (|β| ≤ |βcrit |) HF solutions as a function of the resonance integral β (βcrit =
−2.48 eV)

as implied by the MOs (25) and (26). Thus, for |β| ≥ |βcrit|, where the symmetric
solutions are stable, we have that

p12 = p23 = 1/
√

2, p13 = 0, pμμ = 1, μ = 1, 2, 3, (38)
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while for |β| ≤ |βcrit| the bond orders p12 and p23 bifurcate as shown in Fig. 5 for
the BS solutions with π/4 ≤ ω ≤ π/2. For 0 ≤ ω ≤ π/4 the role of p12 and p23 is
interchanged (cf. also Fig. 2 of [26] for an analogous result in the closed-shell case of
benzene).

7 Breaking of a nuclear framework symmetry

As already pointed out above the presence of a spin-preserving instability of a symme-
try-adapted RHF or ROHF solution implies the existence of degenerate BS solutions
of the first kind. This in turn implies the “instability” of the system towards a de facto
symmetry breaking or distortion of the system as described by a Hamiltonian that is
no longer invariant to symmetry operation(s) inter-relating degenerate BS solutions
and yields HF solutions of the second kind. In the molecular case this entails an appro-
priate distortion of the nuclear framework along some symmetry-breaking coordinate
(designated in the following by � or γ ) characterizing such asymmetric geometries.
It is thus important to distinguish BS solutions that are associated with a fully sym-
metric Hamiltonian or nuclear framework geometry (BS solutions of the first kind)
from those that are based on a correspondingly distorted geometry (BS solutions of
the second kind). This distinction is not always sufficiently clear in the literature but
it should be clear in the following from the context.

In the case of our simple model we can define � as the difference between the
C1–C2 and C2–C3 bond lengths, i.e., � = d1 − d2, with � = 0 characteriz-
ing the undistorted symmetric structure (cf. Fig. 1a). Considering the bond lengths
d1 and d2 as independent distortion (or vibrational) coordinates we can best explore
the relevant PES by considering a PEC cut along the line d1 + d2 = 2d for d desig-
nating the standard C–C bond length d = 1.4 Å. We can equivalently characterize the
distorted structures by the ratio of the d1 and d2 bond lengths, namely by the parameter
γ = d1/d2 that is simply related to �, i.e.,

� = d1 − d2 = 2d
γ − 1

γ + 1
, (39)

γ = d1

d2
= 2d + �

2d − �
, (40)

where we assume that d1 + d2 = 2d.
Such a distortion of the nuclear framework will resolve the degeneracy of BS solu-

tions at � = 0 or γ = 1, yielding two solutions for the distorted structure, one having
a lower and the other one a higher energy than the degenerate BS solutions depend-
ing on whether the distortion is “in” or “out” of phase with the CDW of the � = 0
BS solution, respectively. This is illustrated in Fig. 6 where we plot the mean energy
value functional Etot(ω), Eq. (41), as a function of the variational parameter ω for
several asymmetric structures characterized by the distortion parameter γ , Eq. (40),
including that for the corresponding symmetric structure (γ = 1) for the resonance
integral value β = −1.5 eV. The stable ROHF solutions correspond to the local min-
ima while the unstable solution is associated with the midlocated maximum. Note that
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Fig. 6 Mean energy value functional Etot(ω), Eq. (41), dependence on the variational parameter ω for
several values of the distortion parameter γ , Eq. (40), and β = −1.5 eV. The plots are shifted to coincide
at ω = π/4. Clearly, for γ < 1 we obtain identical plots that are reflected about the ω = π/4 axis (cf. also
Fig. 7)

an “in-phase” distortion lowers the energy of the γ = 1 degenerate BS solution while
the “out-of-phase” distortion raises this energy. For sufficiently large distortions the
higher-lying minimum merges with the intermediate maximum into an inflexion point
at γ = γcrit or � = �crit . It is not difficult to see that, in general, the two resulting
PECs will cross (with a finite angle of crossing) at the symmetric geometry � = 0
(for a schematic representation, see, e.g., Fig. 6 of [19] or Fig. 1(c) of [17]). However,
a detailed shape of the entire PEC or PES, particularly in the neighborhood of the
crossing, is not immediately apparent and difficult to compute in general situations.

In the studied simple example we can easily find all the HF solutions (both stable
and unstable ones) for any geometry since our variational space is one dimensional.
For this purpose it is useful to rewrite the total energy expression of Eq. (30) by adding
the nuclear energy (in the Goeppert-Mayer and Sklar sense) Enucl = γ1 +γ ′

1 +γ2 and
define the total energy as follows

Etot(ω) ≡ E(ω) + Enucl − 1
2γ0 = 2 (βs + β ′c) + 1

8 (γ0 − γ2) sin2(2ω)

− 1
2 (γ1s2 + γ ′

1c2). (41)

We then have

E ′
tot(ω) = 2 (βc − β ′s) + 1

4 (γ0 − γ2) sin(4ω) − 1
2 (γ1 − γ ′

1) sin(2ω), (42)

and

E ′′
tot(ω) = 2 (βs + β ′c) + (γ0 − γ2) cos(4ω) − (γ1 − γ ′

1) cos(2ω). (43)
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Using the above expressions we can now easily compute ROHF energies for any
β and γ (or �) values. We are particularly interested in the range of a coupling con-
stant that yields unstable symmetry-adapted ROHF solutions in which case we can
generate three solutions for each distorted structure with γ �= 1 (or � �= 0), namely
two stable ones associated with the minima on the Etot(ω) curve and an unstable one
associated with a maximum as is apparent from the plots of Etot(ω) on ω in Fig. 6.
We simply have to find the respective ωopt values given by the roots in the derivative
E ′

tot(ω) dependence by locating the sign changes in the appropriate list or plot. To get
a precise value we can interpolate between a few points surrounding these roots. The
second derivative E ′′

tot(ωopt) then verifies the nature of the extremum, a positive value
for a minimum and a negative one for a maximum. In the critical case for � = �crit
it will identify the inflexion point.

8 Discussion and conclusions

Using a simple π -electron model of the allyl radical as described by the PPP Hamilto-
nian we were able to test the HF doublet-stability conditions by comparing the resulting
critical value for the resonance integral β, βcrit = −(γ0 − γ2)/(2

√
2) = −2.48 eV,

with the result obtained by the direct analytical derivation of the explicit expressions
for the mean energy value and its derivatives [cf. Eqs. (24) and (35)]. Moreover a
similar explicit description was possible for HF solutions that are associated with dis-
torted structures of our model. These solutions are of particular interest for the region
of a coupling constant in which the symmetry adapted HF solution is doublet unstable
implying the existence of lower-lying BS HF solutions of both the first and the second
kind (the latter for correspondingly distorted structures).

Using the explicit energy expressions for the total energy and its derivatives,
Eqs. (41)–(43), we were thus able to find easily relevant HF solutions for any set
of parameters defining our PPP Hamiltonian as is apparent from the plots of the mean
energy values Etot(ω) as a function of the variational parameter ω (cf. Fig. 6). The
entire energy surface as a function of both the distortion parameter � and the var-
iational parameter ω for a typical value of the resonance integral β = −1.5 eV is
displayed in Fig. 7. The same surface for resonance integral values of −2 and −1 eV
is also shown, respectively, in Figs. 8 and 9 as an iso-energy plot. Based on these
results we can generate the required PES or its various cuts.

A particularly revealing cut of the PES is along the line d1 + d2 = 2d which is
perpendicular to the “breezing mode” coordinate given by the line d1 = d2 repre-
senting symmetric structures (cf. Fig. 3 of [5]). Several of such PES cuts for different
values of the resonance integral are shown in Fig. 10 revealing a typical swallowtail
shape characterizing the singular nature of this part of the PES. In this figure the dots
indicate the energy of unstable symmetry-adapted ROHF solutions while the PECs
intersect at the energy of the degenerate BS ROHF solutions for � = 0. The dotted
lines indicate the energy of unstable ROHF solutions as given by the maxima on the
mean energy value plots (cf. Fig. 6).

A 3D plot of the relevant part of the PES displaying its singular behavior in the
vicinity of the critical β value (−3.5 eV � β � −1.0 eV) is shown in Fig. 11 as a
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Fig. 9 Energy levels representing the surface shown in Fig. 7 for β = −1 eV
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Fig. 11 A 3D plot of the relevant part of the potential energy surface (PES) as a function of both β and γ

parameters in the vicinity of the critical β value (−3.5 eV � β � −1.0 eV) displaying the character of the
“swallow-tail” singularities arising for |β| < |βcrit

function of β and �. To achieve a more conspicuous representation we have shifted
the energies relative to the energy of BS solutions at � = 0. The parts of the PES
lying, respectively, below and above (the latter for β > βcrit) the E(� = 0) energy
(orange and violet online) are associated with stable ROHF solutions, while the part
that is associated with unstable ROHF solutions is represented by the topmost, trian-
gular-shaped surface (green online) joining the stable solution surfaces situated above
the E(� = 0) energy reference. The figure also displays the cuts across the PES for
the limiting values of β, namely β = −1 and −3.5 eV, as well as for the critical β

value at β = βcrit ≈ −2.48 eV. The latter delineates the region of the existence of
unstable HF solutions. Note that the cut at β = −1 eV is identical with that displayed
in Fig. 10 for the same β value. It should be noted that in the case of our simple model
we can just as easily determine the energies of unstable HF solutions for distorted
structures as for the stable ones. These unstable solutions exist within the interval
of distortion parameters � ∈ [−�crit,�crit], with �crit defined by the distortion for
which the maximum and one of the minima on the Etot(ω) plot merge into an inflexion
point (cf. Fig. 6).

Note also that PESs in Fig. 11 that are associated with stable ROHF solutions inter-
sect in a line corresponding to degenerate BS solutions at � = 0 or γ = 1 and their
extensions beyond this point eventually disappear at � = ±�crit where they join with
those associated with unstable solutions, thus yielding a complete representation of
the relevant swallow-tail singularity. In other more complex situations it is extremely
difficult, if not impossible, to generate that part of the PES that is associated with
unstable solutions. Even a very careful “analytic continuation” starting at the doubly
degenerate BS solution soon breaks down.
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We can conclude that the studied simple model of the allyl radical demonstrates
both the appropriateness of the doublet-stability conditions for ROHF solutions and
enables a full description of the singular nature of the resulting ROHF PESs.
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Appendix: One- and two-electron integrals

We present below the expressions for the required one- and two-electron integrals over
the MOs (25) for general distorted structures. The corresponding expressions for the
symmetric structures are obtained by identifying primed and unprimed parameters,
i.e., by setting β = β ′ and γ1 = γ ′

1.

〈1|z|1〉 = βs + β ′c − 1
2γ1(1 + s2) − 1

2γ ′
1(1 + c2) − 1

2γ2,

〈0|z|0〉 = −γ1c2 − γ ′
1s2 − γ2,

〈11|v|11〉 = 1
4γ0(1 + s4 + c4) + 1

2 (γ1s2 + γ ′
1c2 + γ2s2c2),

〈10|v|10〉 = γ0s2c2 + 1
2 [γ1c2 + γ ′

1s2 + γ2(s
4 + c4)],

〈10|v|01〉 = (γ0 − γ2)s
2c2.
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